
Computer Networks 56 (2012) 477–489
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Survey Paper

A survey on policy languages in network and security management

Weili Han ⇑, Chang Lei
Software School, Fudan University, Shanghai 201203, China
a r t i c l e i n f o

Article history:
Received 13 May 2011
Received in revised form 21 August 2011
Accepted 20 September 2011
Available online 12 October 2011

Keywords:
Policy language
Policy-driven management
Network management
Security management
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.09.014

⇑ Corresponding author.
E-mail address: wlhan@fudan.edu.cn (W. Han).
a b s t r a c t

Policy-driven management is gaining popularity today, mainly due to the ever-growing
scale and complexity of large networked systems. In these systems, policies are usually
used to simplify the tasks of the system management, thus making way for further system
enlargement. Accordingly, a variety of policy languages are proposed to express intentions
of administrators in the policy-driven systems, especially for the network and security
management. This paper, therefore, investigates current works, discusses the key issues,
and then outlines the future work of policy languages.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction First of all, policies in the policy-driven approach are pre-
Today’s information systems are rapidly growing in scale,
and at the same time incorporating various emerging tech-
nologies. Facing the resulting complexity, traditional system
management (including security management) strategies,
which mainly rely on IT professionals’ manual work, seem
effort-consuming and error-prone for large-scale networks
or distributed systems. Especially in today’s context, with
prevailing technologies such as Cloud Computing [1],
large-scale data centers may in the near future consist of
millions of machines, taking Google as an example [2].

To resolve these issues, policy-driven management [3]
is proposed to be leveraged, to simplify the administration
of the large scale systems, including the Cloud Infrastruc-
tures [4]. In a policy-driven management system, adminis-
trators just need to specify their targets and constraints in
the form of policies, to guide the behaviors of system ele-
ments. From this perspective, a policy can be seen as a
common intermediate format, domain- or device-indepen-
dent, to map requirements of the system to specific and
implementable operations.

Advantages of the policy-driven approach over tradi-
tional management methods mainly lie in three aspects.
. All rights reserved.
defined by policy makers, and stored in a repository point.
Once demanded, appropriate policies can be retrieved
autonomically and immediately, freeing the administrator
from manual countermeasure on a per-event basis. Sec-
ondly, the formal foundation of most policy languages
introduces automated analysis and verification of policies,
with the purpose of ensuring consistency and providing
explanation to some extent. Thirdly, because of the
abstraction from lower technical details, policies in the
policy-driven approach can be inspected and changed
dynamically at run time, without changing the underlying
implementation.

This paper, therefore, overviews policy-driven manage-
ment, and investigates the status quo of the researches and
development of policy languages.

We discuss the languages from two categories: network
management policy languages and security management
policy languages. The former focuses on how to drive the
network devices and resources to meet system require-
ments, e.g. SLA (service level agreement) assignments,
whereas the latter focuses on the protection of system re-
sources, including users’ privacy.

The rest of this paper is organized as follows: Section 2
overviews the policy-driven management mechanism;
Section 3 introduces the typical construction of a policy
language; Section 4 illustrates two classifications of

http://dx.doi.org/10.1016/j.comnet.2011.09.014
mailto:wlhan@fudan.edu.cn
http://dx.doi.org/10.1016/j.comnet.2011.09.014
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


478 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
existing policy languages, and analyzes the policy lan-
guages respectively; Section 5 discusses some important
issues in the policy languages; Section 6 outlines the future
work of policy languages; Section 7 gives out a summary to
this paper.
2. Overview of policy-driven management

2.1. Typical architecture

According to the PCIM (Policy Core Information Model)
[5] developed jointly by IETF and DMTF, the policy-driven
management consists of three key components: PR (Policy
Repository), PDP (Policy Decision Point), and PEP (Policy
Enforcement Point). Besides, there may exist an additional
PAP (Policy Authorization Point), facilitating formulation,
analysis and verification of polices on the part of humans.
In such an architecture, as is shown in Fig. 1, policy makers
could pre-define management policies through a PAP, then
deposit them in a PR. After that, a PDP will be monitoring
the system. Once the specific events occur, they will trigger
the PDP to retrieve the PR for applicable policies. According
to these policies, when the specific conditions are met, the
corresponding actions should be enforced by the related
PEP. COPS (Common Open Policy Service) [6] or SNMP
(Simple Network Management Protocol) [7] can be used
to communicate between a PDP and a PEP. And LDAP
(Lightweight Directory Access Protocol) [8] can be used
by a PDP to retrieve a PR.

Fig. 1 shows a typical policy-driven management archi-
tecture. In a real system, actually, these components may
be more than one, and the location of them could be cen-
tralized or decentralized. For example, in a large organiza-
tion, there may be several PAPs, to authorize polices to a
single PR; or a PDP can be connected to several PEPs to en-
force policies.

Policies can be grouped according to different criteria.
Nowadays it is generally accepted that there are two main
kinds of policies: low-level policies, which are more do-
main- or device-related, and high-level policies, which are
more user-friendly. In addition, Kephart et al. [9] have fur-
ther divided high-level policies into Goal policies and Util-
ity Function policies, along with low-level Action policies,
making it three categories in total. Thus in this perspective
high-level goals such as enterprise’s business objectives,
SLAs, can be specified as high-level policies, either Goal or
Utility Function ones. For example, as in the data center
Fig. 1. Policy-driven mana
scenario exemplified in [9], a high-level Goal policy can
take the form of Response time of Gold Class should be less
than 100 ms, and a high-level Utility Function policy can
be Maximize the sum of Gold and Silver classes’ utilities. In a
practical implementation, these high-level requirements
are then refined into low-level policies, which are more di-
rect, technical, and can be assigned to and operated by
agents (devices, human users, or software programs). Often
low-level policies are Action policies, taking the form of IF
(Condition) THEN (Action), such as IF (Gold_Class. Response_-
Time > 100 ms) THEN (increase CPU by 5%).

A policy-driven system can be applied in a wide
spectrum of domains, such as QoS management within a
network, e.g. Cisco QoS Policy Manager [10]; internet ser-
vices access control, e.g. the access control model for web
services [11] based on XACML [12]; privacy management
for web users, e.g. P3P [13] and APPEL [14]; access and
transmission management of location information over
the Internet, e.g. IETF’s Geopriv [15]; call control in tele-
phony [16], e.g. the ACCENT project [17]; enterprise mod-
eling, e.g. RM-ODP [18]; and most recently, management of
the Cloud architecture [4].

The policy-driven management approach is researched
in both industry and academia. In the industry area, several
commercial tools have been developed, mainly based on
the PCIM framework. In the academic area, researchers
have formulated many policy languages to model system
elements and specify various policies.
2.2. Existing implementations

Here we list some commercial tools for realizing the
policy-driven management.

Basically, the common ground of them is the architec-
ture, which is based on the above mentioned PCIM frame-
work. The PCIM framework consists of three components:
a user interface (acts as a PAP), a policy server (acts as a
PDP and a PR), and an agent (acts as a PEP). Administrators
can define and edit policies through the user interface, in
the form of IF (Condition) THEN (Action) rules compliant
with the PCIM. And then the policy server will monitor
the system and trigger actions when conditions are met. Fi-
nally these actions are enforced by the agents, e.g. specific
applications or physical devices.

There are many differences among the tools, and our
concern in this paper is the various languages they use to
model policies. In this aspect, they either adopt their own
gement architecture.



W. Han, C. Lei / Computer Networks 56 (2012) 477–489 479
specific languages, such as HP Openview PolicyXpert and
CiscoAssure do, or partly/fully support one or more stan-
dard languages. For example, IBM Tivoli supports the OA-
SIS standard XACML, and Axiomatics can fully support
XAMCL. To the best of our knowledge, no other critical
assessment research on other aspects of these implemen-
tations exists. In other aspects, we believe these commer-
cial implementations are specially developed to manage
their own networks and information systems, thus we
leave it as future work to compare them from other per-
spectives such as performance.

� IBM Tivoli: Tivoli [19] is a family of policy-driven prod-
ucts for the IT infrastructures management, including
resource allocation, security and privacy protection,
storage management. The policy-driven authorization
and authentication engines used by the series of Tivoli
products are Tivoli Access Manager and Tivoli Security
Policy Manager.
As one product of the Tivoli family, Tivoli Security Pol-
icy Manager [20] can define and enforce security poli-
cies in a policy-driven system, whose architecture just
complies with the typical PCIM architecture as is shown
in Fig. 1. In the aspect of policy representing, it supports
open and standard formats, i.e., OASIS WS-Security [21]
for message protection policies, and OASIS XACML
(eXtensible Access Control Markup Language) [22] for
authorization policies.
Another Tivoli product, Tivoli Access Manager [23],
basically supports the PCIM architecture as well. It
checks an access to a resource according to the ACL
(Access Control Lists) and POP (Protected Object Poli-
cies) attached to objects, which are stored in an autho-
rization database. In a simple access evaluation process,
the Access Manager checks the requester’s identifier
against the requested object’s ACL, to determine
whether to grant a permission, by using an evaluation
scheme on ACLs. In addition, ACL can be translated into
XACML as well [24].
According to the report from literature [23], the Web
Portal Manager supported Role-Based Access Control
as is described in Section 4. Even, the Privacy Manager,
another extension of Tivoli Access Manager, added sup-
port for ‘‘dynamic roles’’.
� HP Openview PolicyXpert: HP Openview is also a family

of products for system and network administration,
with PolicyXpert [25] one of them.
PolicyXpert provides the policy-driven network man-
agement solution where service-level agreements in a
heterogeneous network environment can be configured
and controlled in standard [26]. PolicyXpert performs
this task by creating business level policies, and then
translating and enforcing them as low-level configura-
tions.
PolicyXpert is also built upon the typical policy man-
agement architecture in Fig. 1. A PAP is implemented
as a console, which is an interface for users to create,
edit and deploy policies. A policy server performs the
task of a PDP and a PR, for policy storage, distribution
and decision-making. A PEP is a vendor-specific policy
agent, which enforces policies by making configuration
changes to resources. COPS (Common Open Policy Ser-
vice) [6] is supported for the sake of communication
between these components.
But, unlike IBM Tivoli, no literature has ever reported
that a standardized policy language is used in HP Open-
view PolicyXpert.
� Cisco CiscoAssure: CiscoAssure [10] is a family of differ-

ent policy-based tools, i.e., QoS Policy Manager, Cisco
Secure Policy Manager and Cisco Network Registrar.
Cisco QoS Policy Manager is based on the typical model
as well, and supports COPS protocol. Through this tool,
network administrators specify QoS requirements or
SLAs in the form of IF (Condition) THEN (Action) rules,
according to the PCIM standard, and then store them
in the PR of a policy server. The physical actions
enforced by PEPs are finally applied to routers by using
CLI (Command Line Interface), a low-level language
supported by Cisco hardware. Multi-vendor interopera-
bility is also provided, through the support for COPS
standard to carry the policy information within the net-
work.
Besides QoS related management, this tool also sup-
ports access control over devices using ACLs (access
control lists).
Like HP Openview PolicyXpert, no literature has ever
reported that a standardized policy language has been
used in Cisco CiscoAssure yet.
� Axiomatics: Axiomatics [27] is the first series of prod-

ucts that fully support XACML 2.0 and 3.0. Thus users
could readily use the full range of capabilities that
XACML provides.
There are three Axiomatics products in this family: Axi-
omatics Policy Server, Axiomatics Policy Auditor, and
Axiomatics Policy Enforcement Points (PEP). Slightly
different from the typical architecture of this kind of
tools, Axiomatics Policy Server combines the function-
alities of PAP and PDP. Axiomatics Policy Auditor is a
separated tool for users to analyze and verify policies.
Users can query information they want to know about
policies such as the applying circumstances or effects
of a policy, and the Axiomatics Policy Auditor will
retrieve the PR and related environment knowledge in
response to users.
Benefiting from the open industry standard XACML, all
access polices are written in a unified format, which
enables various components in the access control sys-
tem to understand one another, thus saving the inter-
pretation efforts to some extent. Besides, newly added
applications can work with the existing system easily,
since their policies all comply with the XACML stan-
dard.
Axiomatics is distinguished from the above-mentioned
tools in that it is specially tailored for the XACML
standard.

3. Construction of policy languages

An abstract policy is implemented through the concrete
rules that construct it. Usually these rules are stored in a PR
as basic management units, for the policy makers to use
and re-use to form multiple policies. Generally speaking,



480 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
rules in most policy languages are based on the following
paradigms: Event–Condition–Action paradigm and Condi-
tion–Action paradigm.

3.1. Event–Condition–Action Paradigm

The ECA rule is originally a technique from the research
area of active database, [28] and has gradually been
adopted as a domain-independent paradigm for various
policy languages, such as the cases of PDL [29] and Ponder
[30]. This ECA paradigm differs from the Condition–Action
paradigm in that it needs an explicit Event element to trig-
ger the execution of an action under certain conditions.
Thus, in the ECA paradigm, a typical rule is composed of
three key parts:

ON (Event) IF (Condition) THEN (Action)

� Event: The Event, which is under monitoring of the sys-
tem, is the part to be specified when the rule should be
triggered. (e.g. the arrival of a new packet as an event).
Event is either primitive or composite. And in PDL
[29], primitive Events are further classified into two
basic types: system-defined primitive Event and pol-
icy-defined primitive Event. The former is pre-defined
by the system, and the latter is tailored by the user. A
composite Event is made up of conjunction of single
events, negation of an event, or a sequence of events
occurring in a predefined order.
� Condition: When the Event is caught, the associated

states or parameters of the system should be checked
against the Condition contained in the policy rule. Con-
dition is usually a predicate expression that can be eval-
uated to True, False or Not Applicable. A Condition can be
time, an application type, an IP address, etc. Conjunc-
tion, disjunction and negation of predicates can form a
Condition as well. If the Condition is met, the corre-
sponding actions should be executed.
� Action: The Action part of a policy rule can be a single

action or a sequence of actions. As a consequence of
the action(s), the current system state, once its attri-
butes meet the Condition, may transform to another
state. Note that the resulting state of the system is not
explicitly specified, thus consideration should be taken
by policy makers while designing the action(s)-trig-
gered transition pattern from state to state.

3.2. Condition–Action paradigm

In both IETF and DMTF’s PCIM [5] and DMTF’s CIM [31],
a policy is applied by using a set of rules, and each policy
rule is constructed by a set of conditions and a set of ac-
tions. Thus this kind of policy rule follows an IF (Condition)
THEN (Action) paradigm. When conditions associate with a
policy rule are evaluated to be true, corresponding actions
can be executed, either to maintain current state of an ob-
ject, or transit to another state.

3.3. Comparison of paradigms

In general, policy languages which follow an IF (Condi-
tion) THEN (Action) paradigm are also event-triggered,
although lacking an explicit Event element in their declara-
tion. However, we recommend the ECA paradigm because
of the extra Event element it brings, and it outmatches
the IF (Condition) THEN (Action) policies at least in these
aspects:

� The Event element in the ECA paradigm could cover
more events in variety. In most cases of the IF (Condi-
tion) THEN (Action) paradigm, a rule’s implicit event ele-
ment is limited in scope, because these policies are not
designed to catch various events. Here we distill the
two most typical implicit events the Condition–Action
paradigm can offer:
– Request-triggered rule evaluation.

In access control languages using the IF (Condition)
THEN (Action) paradigm such as XACML [12], the
Condition of a policy rule is evaluated when requests
come, and these requests submitted by the subject
can be seen as implicit events.

– Periodically-triggered rule evaluation
In some rules of the Condition–Action paradigm, the
Condition is periodically evaluated to check the sta-
tus of a system element, at regular intervals.

If encoded in ECA, these implicit events of Condition–
Action paradigm can be readily defined as specific Events.
Besides, ECA can also cover events that are related to envi-
ronment attribute changes, to provide an asynchronous
notification mechanism, whereas Condition–Action para-
digm cannot.
� The Event element could be separated from Condition

and Action, to provide a more flexible and composite
Event. For example, in CIM-SPL [32], the specification
and evaluation of Event is separated from the specifica-
tion and evaluation of the rest of the policy, while an
additional event correlation engine or invocation
method is provided to trigger policies.

In this survey, we classify a policy language to be ECA
rule-based only if it declares to be so. Basically this means
its Event part supports various events, providing an asyn-
chronous notification mechanism to the system; and this
Event part is incorporated with the Condition and Action
part in an ECA rule at the same time.
4. Policy languages for network and security
management

According to their application scenarios, policy lan-
guages can be grouped into different classifications.
Through our investigation, we select two typical categories
which are policy languages for network management and
policy languages for security management.

Although security management could be considered
part of network management, here we separate policy lan-
guages for security management from those for network
management, because of the different emphasis their mod-
eled policies lay on. As for the network management cate-
gory, we mean policy languages whose aims are to allocate
resources, e.g. bandwidth, CPU time, and the configuration
of devices within a network according to the system



W. Han, C. Lei / Computer Networks 56 (2012) 477–489 481
requirement, e.g. SLA assignments. And for the security
management, the policy languages we discuss focus on
security only, especially access control and privacy.
Although several general-purpose policy languages such
as Ponder [30] could express policies for both network
management and security management, still many policy
languages focus on security aspects only such as access
control, e.g. the OASIS standard XACML [12], privacy poli-
cies, e.g. APPEL [14], and security goals, e.g. VALID [33].

The following languages we choose to introduce are
either proposed by standard organizations such as IETF
and OASIS; or widely referred to, such as Rei [34].

We profile the investigated languages according to six
critical features listed in Table 1. These features are se-
lected as evaluation criteria because of their respective
merits:

� ECA: This refers to whether a language follows the ECA
paradigm to express its policies. If the language is not
ECA, then it is based on Condition–Action paradigm.
As is mentioned in Section 3, the ECA paradigm can deal
with more complicated events, such as events with
asynchronous notification, and composite events. Thus,
it is a good construction to design a general-purpose
policy language.
� XML: This refers to whether the representation of this

language is encoded in the XML format.
Since XML is an international standard which is expres-
sive and extensible, we view it beneficial to encode a
policy language in this format, to advance usability
and facilitate interchange.
� Index: This refers to whether there exists a special item

for policy engine to retrieve the required policies more
efficiently.
This item could help to increase retrieval efficiency,
thus to improve the performance of the PDP.
� RBAC: Role-Based Access Control [35] is widely used in

the policy-based access control management. RBAC
uses roles to bridge subjects and permissions. A subject
can be assigned roles, and roles can be assigned permis-
sions. Due to the stability of roles in a system or organi-
zation, the task of the administrators will be simplified
by RBAC. Thus, a policy language supporting RBAC can
better help administrators in the security management.
� Obligation: This refers to whether the policy language

can trigger tasks that must be performed, once some
Event occurs and the related Condition is met.
Table 1
Features in policy languages.

ECA XML Index

PFDL
PDL U

Ponder U

CIM-SPL
KAOS
XACML U U

Rei
EPAL U U

P3P/APPEL U

ASL
VALID
These actions are triggered like side effects of the occur-
ring Event or applied Condition. For example, when the
access to some resources is permitted, the subject is
obliged to return the resources in time, and forbidden
to leak it out.
In most cases, policies express what an element can do,
which is an authorization, and what an element must
do, which is an obligation. Thus obligations are neces-
sary under some circumstances. As a result, we think
a policy language is not expressive enough if it lacks
obligation policies.
� Formalization: This refers to whether this policy lan-

guage has a formal foundation. It can either directly
express policy rules in formulas of some logic such as
first-order logic, or it can be translated into a formal
language.
This feature directly decides whether this policy lan-
guage could leverage automated reasoning, for conflict
check, goal refinement, etc.

4.1. Policy languages for the network management

From the perspective of network operation, the policy-
driven network management aims at reducing the com-
plexity of network management tasks. With policies, the
system gains some autonomy, saving the administrator’s
manual work to some extent. A typical usage in this do-
main is the QoS management.

IETF and DMTF have jointly proposed a model to ex-
press policy information used in a network, i.e., PCIM (Pol-
icy Core Information Model) [5]. The PCIM can be mapped
into network device configurations, and it can also be uti-
lized as a support for higher-level languages. Some existing
commercial tools adopting the PCIM policy framework
have been discussed in Section 2. Besides these compre-
hensive tools in the industry area, several languages tar-
geted at the policy-driven network management have
also been proposed by researchers, and the typical ones
are listed as follows.
4.1.1. PFDL
PFDL (Policy Framework Definition Language) [36] is a

network administration definition language, which is orig-
inally proposed as a necessary part of the PCIM model.
However, the IETF policy group then suspended further
work on PFDL, because they realized that the language part
RBAC Obligation Formalization

U U

U U

U

U

U U

U U

U U

U



482 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
of the PCIM is too flexible to reach a consensus within the
available time.

As a general-purpose language proposed to fit into the
PCIM model, the PFDL rule is specified through a manage-
ment console (PAP) and used in a prototypical policy server
(PDP), to implement a centralized view of administrator
with regards to QoS, access control, and customized web
applications management.

PFDL is an aggregation of a set of policy rules, which are
organized in a IF (Condition) THEN (Action) paradigm. In the
hierarchy defined in IETF’s draft [37], the classes from
higher level to lower level ones are: ComplexPolicy, Sim-
plePolicy, PolicyRules, in which the former classes can con-
tain one or more of the latter classes. And each PolicyRules
class contains a set of PolicyConditons and PolicyActions
classes.

4.1.2. PDL
The Policy Description Language (PDL) [29], proposed

by Bell Labs, is one of the first policy-based management
languages, mainly for network administration. It is declar-
ative, domain-independent, and formulated as ECA rules.
In its ECA rule, Condition is just a set of simple predicates,
Events are divided into primitive ones and composite ones.
The latter events can be constructed by the former events
by using boolean operators (AND, OR, etc.) or temporal
operators. A formal framework is developed, to evaluate
policies specified in PDL, and a PEP is proposed to commu-
nicate between devices and policy servers [38]. An ap-
proach to translate PDL policies into logic programs is
also proposed to detect and resolve conflicts among ac-
tions, according to action constraints [39].

There are two main flaws in PDL. On the one hand, Rules
cannot be hierarchically grouped, i.e., a policy has a flat
structure merely, without role or any other concept. On
the other hand, there is no specific order of rules in a
PDL policy.

4.1.3. Ponder
Ponder [30] is a declarative and object-oriented policy

language from Imperial College. It can specify security pol-
icies using Role-Based Access Control, and general man-
agement policies for distributed systems. Unlike PDL, a
key feature of Ponder is that related policies are highly
grouped into roles. And the interaction between roles are
defined as relationships. This structure could better facili-
tate the reuse and flexibility of policies.

There are five types of policies in Ponder: Authorization
policies, Filter Policies, Refrain policies, Delegation policies,
and Obligation policies. The former four types are targeted
at defining access control policies, and Obligation policies
are used to support ECA paradigm to perform management
actions in the policy-driven management, i.e., when spe-
cific events occur and conditions are applied, a subject
must perform some actions on target objects. In this aspect,
Ponder’s Obligation policies are similar to PDL. In compar-
ison we can see Ponder has a broader scope in the variety
of policies.

Although it is not XML-based, Ponder is easy to be
translated into XML representation, for a standard XML
browser or for exchange of policies across different
domains [30]. As for conflict resolution, Ponder utilizes
meta-policies to prevent conflicting actions [30]. In addi-
tion, a PEP is provided, taking the form of an enforcement
agent in a deployment model of Ponder written in Java
[40].

4.1.4. CIM-SPL
CIM-SPL (Simplified Policy Language for CIM), [41] is a

policy language proposed specially to complement and
render the policy model included in CIM (Common Infor-
mation Model) standards of DMTF (Distributed Manage-
ment Task Force), and is a DMTF standard submitted by
the DMTF Policy Working Group.

CIM [31] is an object-oriented model defined by the
DMTF to describe various components of IT infrastructure,
such as systems, networks, applications and services. It
also includes a policy model to define policy objects in
the systems, and these policy objects can be grouped and
structured.

CIM-SPL is an abstract model of policy language, which
follows an IF (Condition) THEN (Action) rule structure. It is
designed to be compliant with the CIM and CIM Policy
Model, hence the special feature of CIM-SPL is that it can
be fully incorporated into the CIM data structures, and its
implementations can naturally draw support from existing
methods designed for CIM. Therefore, in each CIM-SPL rule,
there is an additional Import field besides the Condition
and Action. The field could refer to existing CIM classes rel-
evant to the policy.

CIM-SPL has an external Event Model [42], to define the
Event-related abstractions, and describe the CIM Indication
hierarchy which is used to model Events that can be de-
tected. In its mechanism, when the policy server receives
a CIM InstIndication, a subclass of CIM Indication which
denotes the occurrence of an action, the evaluation of the
corresponding policy will be initiated.

Although CIM-SPL is a general purpose policy language,
it does not directly define access control policies. A method
combining RBAC with the CIM-SPL is proposed as an exten-
sion of it [43].

Finally, an open source implementation of a CIM-SPL
policy engine has been started in the Open Group’s Open-
Pegasus project [44].

4.1.5. KAOS
KAOS (Knowledge Acquisition in autOmated Specifica-

tion) [45] is a language initially designed for goal-directed
software requirements analysis. It can also be selected by
the policy-driven system to express high-level goals.

Distinguished from previously mentioned languages,
KAOS is a typical Goal policy language, not an Action one,
as is described in [45]. As a typical Goal policy language,
KAOS provides the capability to assign system-level and
organisational objectives rather than lower-level process-
or action-oriented descriptions.

KAOS supports a formal specification of the system by
using temporal logic. Based on this formal foundation, a
necessary refinement pattern can be created, which is used
to derive more domain-specific low-level policies, which
are often in the form of conjunction or disjunction of subgo-
als, from high-level goals. Finally, through a goal-regression



W. Han, C. Lei / Computer Networks 56 (2012) 477–489 483
process, a series of implementable actions can be acquired
for enforcement.

4.2. Policy languages for the security management

Actually, security management is one of the most
important aspects in the system and network manage-
ment. Many policy languages were proposed to express
the administrators’ intention on the security management.

4.2.1. XACML
Nowadays eXtensible Access Control Markup Language

(XACML) [12] is widely accepted both in industry and aca-
demia as a de facto standard. XACML is a declarative, XML-
based policy language, mainly for access control manage-
ment in distributed systems. It provides standards for both
access control policies and access control request-respond
format. Latest lease version 2.0 was approved by OASIS
standards organization as an international standard on
February, 2005, and now version 3.0 is under drafting.

A distinguished feature of XACML is its Target element
that is attached to every rule, policy and policy set, for
the purpose of policy indexing. Target is defined by the re-
sources, actions, subjects, and environments where the
rule or policy applies. In response to a request, a PDP can
search for the applicable policies by evaluating their
Targets.

Another feature of XACML is that when more than one
policy is applied, the strategy to give the overall answer
and to avoid conflict is a policy combination procedure,
i.e., the combination of actions from multiple policies, with
the support of several rule-combining and policy-combin-
ing algorithms [46]. Besides, PCL (Policy Combining Lan-
guage), a formal language specially for policy
combination is proposed, which improves the policy com-
bining theory in several ways, particularly the ability to
introduce new policy combining algorithms. It is primarily
motivated by XACML, and has already been implemented
and integrated with Sun’s XACML Open Source Implemen-
tation [22], a commonly used tool available for the imple-
mentation and enforcement of policies encoded in XACML.

Besides, XACML is intended to fit in various application
environments. The core XACML language is insulated from
specific application domains by XACML context. And the
external domain-specific inputs and outputs are out of
the scope of XACML specification.

Furthermore, we do not categorize XACML to be ECA
rule-based, because the event to trigger the PDP is only
an access request, and environment attribute changes are
not included. Some researchers have proposed methods
to add an event-driven behavior to XACML [47].

Finally, XACML itself only provides limited support for
RBAC. However, a policy language combining XACML and
RBAC has also been proposed recently, which is xfACL
(eXtensible Functional Language for Access Control) [48].

4.2.2. Rei
Rei [34,49] is a declarative policy specification language

based on deontic logic. It is concerned with obligation, per-
mission, etc., designed mainly for security and privacy in
dynamic and open computing environments. In Rei, policies
are defined as constraints over allowable and obligated ac-
tions on resources. Next, Rei provides a policy engine to
dynamically either allow or deny a request from an entity,
after reasoning over policies and related domain knowledge.
Meta-policies are also included and enforced in decision
making, to make sure the actions to be taken are consistent
and conflict-free. In addition, given the characteristics of
pervasive environment, Rei uses so-called speech acts which
include delegation, revocation, request and cancellation, to
make the security control of pervasive applications simple
and decentralized. Furthermore, Rei is not strictly role-
based, because it can specify individual, grouped, and role-
based policies at the same time. Finally, implementation
also exists to enforce policies defined in Rei [50].

4.2.3. P3P/APPEL
W3C’s P3P (Platform for Privacy Preferences Project)

[13] and APPEL (A P3P Preference Exchange Language)
[14] are used for privacy negotiations between a web site
and its users, including the collection of web user’s
preferences.

P3P is ratified as a W3C web standard in Aril 2002. By
using P3P, web sites can express their privacy policies that
can be retrieved automatically and interpreted easily by
user agents [13]. Web sites may declare in P3P why they
need users’ personal data, what data they collect, how long
they will retain them, and who will use these data, etc.
These elements are standardized in a policy, which is ap-
plied to a specific set of data resources. Then the web users
can be informed of web sites’ data-collection policies,
which are encoded in the machine-readable XML format,
with the help of a user agent such as P3P-enabled web
browsers. In this way the user can rely on his or her agent
to read and evaluate web sites’ policies on behalf of him or
her, and to further opt-in or opt-out data sharing decisions.

APPEL can complement P3P in that it describes a collec-
tion of a user’s privacy preferences regarding P3P policies,
although it is not a W3C standard yet, and not required as a
must in a user agent. Nevertheless, the user can adopt AP-
PEL to express his or her preference rules, and then his user
agent can make automated or semi-automated decisions
on accepting or not accepting web sites’ machine readable
privacy policies from P3P-enabled web sites, by comparing
web sites’ declared practices with web user’s preference
rules. These decisions could be given out by simply inform-
ing the user, or prompting him for a decision.

XPref [51], another small preference language based on
a subset of XPath [52], is proposed as an alternative to AP-
PEL, to overcome some shortcomings in APPEL’s funda-
mental design choices. A translator is also provided to
translate APPEL to XPref.

Several tools exist for both user agents and server-side
support [53]. For the user side, Internet Explorer has
built-in P3P functionality, but mainly limited in cookie
management: web sites may include compact policies in
a P3P HTTP header, to declare their policies on how to
use cookies; then the browser could refer to these compact
policies whenever encountering a cookie. There are also
full P3P user agents, such as AT&T’s Privacy Bird [54],
which has an additional support for APPEL as well. For
the server side, the above mentioned tool, the IBM Tivoli



484 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
Privacy Manager for e-business, supports P3P privacy pol-
icies in its e-business applications and infrastructure.
Other P3P policy editors adopted by many enterprises are
P3PEdit [55], P3PWriter [56], etc.

P3P/APPEL are two XML-based languages, thus can be
easily to accepted in the Web. But some important fea-
tures, such as RBAC, Obligation, are not included.

4.2.4. EPAL
Enterprise Privacy Authorization Language (EPAL) [57]

is an XML-based language proposed by IBM, and the latest
version, EPAL1.2 was submitted to W3C in November 2003
for consideration as a W3C standard, but has not been ap-
proved so far. EPAL is similar to XACML to some extent, but
the difference is that EPAL is targeted at privacy policies
only, not general access control policies such as XACML,
thus EPAL is not so broadly applicable and deployed as
XACML, either. As a specific privacy policy language, a fea-
ture of EPAL is that rather than adopting traditional RBAC
strategy, it uses purpose-based access control. The authori-
zation decision is evaluated directly by the subject’s pur-
pose of using the requested resource. For example, your
physician can access your health information while the
physician’s purpose is medical treatment. This access con-
trol mechanism simplifies the traditional RBAC, but re-
quires a well-structured Purpose element. IBM has
provided tools to implement and enforce EPAL, and some
degree of policy refinement and conflict resolution has also
been included [58].

4.2.5. ASL
ASL (Authorization Specification Language) [59] is an

access control language based on first order logic. In its
security model, ASL consists of essential RBAC compo-
nents, i.e., users, roles, and objects.

An authorization policy rule expressed by ASL is a map-
ping from the four-tuple: a user, a role set, an object, and an
action, to the access decision authorized, or denied. From
this view we note the decision making mechanism of ASL
lacks sufficient flexibility and reusability, because the
authorization decision is encoded in the rule itself, at-
tached with a role set, rather than dynamically determined
by a PDP explicitly.

An authorization specification of ASL is composed of a
set of rules, i.e., authorization rules, derivation rules, reso-
lution rules, access control rules, and integrity rules. It is
written in a stratified Datalog program, which is a formal
language based on first order logic. These rules will be
evaluated according to its semantics, once an access re-
quest comes. This checking process can be performed in
linear time with respect to the number of rules in the
authorization specification [60].

Given that different models may make different deci-
sions on authorization derivation and conflict resolution,
ASL allows the specification of arbitrary rules about these
issues. Jajodia et al. [59] also demonstrated how various
approaches can be represented in ASL.

4.2.6. VALID
VALID (Virtualization Assurance Language for Isolation

and Deployment) [33] is a security assurance language to
express high-level security goals, with the purpose to mit-
igate configuration problems in virtualized infrastructures
like clouds. This language is based on the tool-independent
IF (Intermediate Format) [61], which gives a formal foun-
dation for VALID to facilitate automated reasoning.

The main feature of VALID lies in that it is the first for-
mal security assurance language for virtualized topologies.
It stands out from its counterparts for two reasons: on the
one hand, it focuses on high-level security goals from a
topology perspective, to complement the local policies.
On the other hand, it takes virtualization into account, in
addition to traditional complex environments, thus prob-
lems like virtual machine isolation are within the range
of consideration.

VALID can be applied in three main scenarios. First of
all, in the access control cases, it is adopted in combination
with low-level XACML language to perform the task. Sec-
ondly, in the case of automated deployment, it should be
used to enforce the high-level security goals automatically.
Thirdly, in the verification case, the high-level security
goals are a part of the verification target, against which
the system should be evaluated.
5. Key issues

In this section, we discuss five key issues in policy lan-
guages and policy-driven management. The policy conflict
issue commonly exists in all policy languages; the refine-
ment is a key issue when Goal policies are translated into
Action policies; the policy administration in distributed
environments is a key issue concerning PAPs; and the last
two issues are key issues about PDPs and PEPs respectively.
5.1. Policy conflict detection and resolution

Policy conflict is a general issue which widely exists in
all policy languages. According to [37], there are two fun-
damental types of policy conflicts: intra- and inter-policy
conflicts, with the former caused by an ill-defined policy
and the latter caused by multiple applied policies leading
to conflicting actions. An intra-policy conflict occurs when
the conditions in two or more policies are simultaneously
satisfied, but a PEP cannot simultaneously execute their ac-
tions in these policies [37]. For instance, in an access con-
trol scenario, one application policy allows the access
request, but the other denies the access request. These
two policies lead to the intra-policy conflict. In addition,
an inter-policy conflict is defined as two or more applicable
policies result in conflicting configuration commands and/
or mechanisms to networked devices [37]. In the inter-pol-
icy conflict case, the conflicting policies do not conflict
when compared to each other statistically, but do conflict
when assigned to system elements at run time.

Accordingly, there are two ways to resolve this issue:
the first intuitive idea is to avoid setting conflicting policies
for a network or system beforehand, which is a static
method to avoid intra-policy conflicts; the second one is
to choose a result or to combine multiple results when
the PDP faces conflict results at run time. This is a dynamic



W. Han, C. Lei / Computer Networks 56 (2012) 477–489 485
method that could tackle both intra- and inter-policy
conflicts.

Most importantly, the first idea should detect policy
conflicts automatically. To this end, policies should be in
the form of or can be translated into a formal expression.
For example, ASL is a language written directly in the first
order logic [59], while PDL can be indirectly translated into
logic programs [29]. By either means, once in logical repre-
sentation, methods already developed in this area can be
readily adopted for conflict checking. Leveraging this con-
flict detection, the policy makers can avoid setting conflict-
ing policies by adjusting policy conditions and/or actions
before applying policies to the system.

As is shown in Table 1, however, some policy languages,
such as PFDL, XACML, are not formal ones. Thus, the second
idea is the more suitable way for these policy languages.
Literature [37] proposed three methods to resolve the con-
flicts, whose principle is to choose one policy among oth-
ers. They are applying a match-first criteria; applying a
priority order criteria; using additional metadata. In the
method of a priority order criteria, the priorities are inher-
ently linear, whereas in the method of additional metada-
ta, the priorities could be branched. Besides the choosing
approach, another approach is policy/rule results combina-
tion, as is designed by XACML. Several combination algo-
rithms are also defined: First Applicable, Deny-Overrides,
Permit-Overrides, Only-One-Applicable [12].

The second idea can also be used in formal policy lan-
guages. For example, Ponder and Rei use additional meta-
data to resolve the policy conflicts [30,34].

5.2. Refinement for Goal policies

As is described in Section 2, policies are generally divided
into high-level policies, which are mostly Goal policies from
the use case point of view, including KAOS and VALID; and
low-level policies, which are mostly Action policies, includ-
ing PFDL, PDL, Ponder, CIM-SPL, XACML, Rei, P3P/APPEL,
ASL. In the cases of Action policy-driven systems, a mapping
is needed to assign actions to concrete objects and devices to
finally realize the management. However, in Goal policy-
driven systems, an additional refinement process is neces-
sary before mapping into the concrete system elements, be-
cause a Goal policy has no detail guidance as low-level
system actions, thus the Goal policy must be refined to
low-level ones on how to achieve the goal.

Challenges in Goal policy refinement mainly lie in how
to automatically derive low-level policies from a high-level
policy, and how to validate them to be consistent with the
original high-level one. To tackle these issues, two bases
are necessary: a formal foundation to construct both the
system and the policy model; and some refinement strate-
gies to match the desired goals and concrete system
behaviors.

Bandara et al. [62] introduces a policy refinement ap-
proach based on Goal-based requirements elaboration
and the EC (Event Calculus). The target of this method is
to refine high-level Goal policies into low-level ones, and
then map them to concrete system elements. First of all,
the system modeled by the UML should be translated into
the EC, which is a formal language to represent the system.
Then for the refinement from high-level goals to low-level
operational policies, abductive reasoning is leveraged, to
select appropriate strategies to elaborate goals to opera-
tions. And finally these operations are assigned to the sys-
tem objects for enforcement. What is worth noticing is that
the concept strategy refers to the mechanism by which a
given system can achieve a particular goal. And when both
the system and the goal have a formal specification, strat-
egies can be inferred through abductive reasoning.

5.3. Policy administration in distributed environments

It is a major task of policy administrators to make poli-
cies by using policy languages. According to our investiga-
tion, existing policy languages have two main
inconveniences for administrators in the process of pol-
icy-making.

� First of all, these languages are usually proposed based
on a simple structured administration model, which is
managed as a whole by a central PAP. However, in real
implementations, distributed environments are often
large-scale and heteromerous systems, built upon a
physically large and topologically complex network.
Taking convenience, efficiency and reliability of admin-
istration into consideration, large distributed systems
are usually divided into various and separate domains,
according to either physical locations, business objec-
tives, or other standards. As a consequence, policies
should also be administered by domains. This issue
now meets two challenges which have had some
advancement, but still require more deep researches.
– Make administration policies: It is a hot spot in secu-

rity policy languages to make administration poli-
cies, which assign who can manage the security
policies in networks or systems, especially large dis-
tributed systems.
Researchers have proposed some administration
models for Role-Based Access Control [63], e.g.
ARBAC 97 [64]. Security analysis methods are also
proposed for RBAC [65,66] with ARBAC97. The theo-
retical analysis shows that general URA-SAP (Secu-
rity Analysis Problem in Role-Based Access Control
with the URA97 administrative scheme) is PSPACE-
complete. And only some cases in URA-SAP are NP-
complete[66]. Thus, it could be hard to develop a
commercial tool to analyze the security of RBAC
within a distributed administration model. In addi-
tion, delegation is widely researched as a special
problem in policy administration in distributed envi-
ronments [67]. To avoid the complexity of theoreti-
cal analysis, Han et al. [68] used measurable risk to
strengthen the security of delegation in a role-based
workflow system.
The newest version of XACML is developing a profile
to administrate its access control policies [69]. But
no literature has ever reported the similar work for
other policy languages mentioned above.

– Composite policies: Policy composition refers to the
problem which arises when distributed policies are
authored and merged together.



486 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
This problem is especially important in access con-
trol policies. Bonatti et al. [70] modeled access con-
trol policies as a set of variable-free authorization
terms, proposed an algebra to composite authoriza-
tion specifications originating from different inde-
pendent parties, and used logic programming and
partial evaluation techniques to evaluate algebra
expressions. However, their algebra only supports
2-valued (Permit and Deny) policies, which is not
enough since the policy may give a third decision
Not Applicable, and their approach did not discuss
the internal mechanisms of the composition. Hence,
Rao et al. [71] proposed a fine-grained composition
algebra for language-independent 3-valued policies.
Because these researches are highly independent of
concrete policy languages, thus the languages,
including PDL, CIM-SPL, and XACML can use these
researches to compose their distributed policies.

� Secondly, policies from different domains could be
reused. We propose this idea because existing lan-
guages actually require policy makers to have deep pro-
fessional knowledge about these languages. However,
in reality, the involved policy makers may not be so
well-trained.
To tackle this, it is a necessity to simplify policy author-
ing for common users. For example, an administrator
can refer to the policies authored by other administra-
tors in other locations. Just by justifying some parame-
ters or a part of policies, the administrator can get his
wanted policy set. This framework would be necessary
for a not well-trained policy maker, such as a common
user in APPEL privacy policy authoring.

5.4. Performance of PDP

A PDP, or a Policy Decision Point, is a core conceptual
element in the IETF policy-driven management model. A
PDP can be seen as a processing engine that can evaluate re-
quests from subjects (in access control scenario), or cur-
rently occurring events (in ECA paradigm), and retrieve
applicable policies stored in the PR and maybe other knowl-
edge as reference, to give out a final decision to a PEP.

The PDP is so important that once it cannot deliver a
high performance when processing complex policies, it
would become a bottleneck of the system. Thus it is impor-
tant to evaluate the policies with a low latency and high
throughput.

First of all, it is a general way to add cache mechanism
[72], including policy caching and result caching, to im-
prove the performance.

Another method to enhance the PDP’s performance is to
add LPDP (Local Policy Decision Point) as an assistant to
the central PDP, such as the case in the COPS [6]. LPDP
stays in the same application or network node with a
PEP, rather than in the server as a central PDP does. It fre-
quently backups the decisions of the PDP, so when connec-
tion is interrupted between the PDP and the PEP, the LPDP
can substitute the PDP to guide the PEP temporarily. But
central PDP has the superior authority.

The above methods can be applied to policy languages
such as PDL, CIM-SPL, XACML, and Rei. But if the number
of policies, such as privacy policies (in APPEL) evaluated
on a client platform, is small, the improvement mechanism
could be redundant.

In addition, Xengine, a special method to improve the
PDP of XACML is proposed by Liu et al. [73]. Xengine trans-
forms the policies before PDP evaluation. After transforma-
tion, the Xengine only uses first-applicable combination
algorithm, to improve the performance, because the PDP
is only required to evaluate the first applicable policy
rather than all applicable policies.

5.5. Execution in PEP

A PEP, or a Policy Enforcement Point, is another core
conceptual element in the IETF model. It is responsible
for sending requests to a PDP, and enforcing decisions
made by the PDP, thus acting as a link bridge between
the PDP and system elements.

To perform its task, on the one hand, it should collect
requests from various system elements, and forward them
to the PDP for decision-making. On the other hand, it
should actually and physically enforce the actions deter-
mined and distributed by the PDP. Particularly, this
enforcement task is complicated by obligation policies, be-
cause this type of actions are often actions that are obliged
to be executed in the future, by subjects of either devices,
applications, or human users. Enforcement platforms for
obligation policies such as Heimdall [74] are proposed,
the design principle of which is that although the PEP can-
not enforce the execution of a future action, it can compen-
sate for any previously executed actions. For instance,
when a system has not complied with its QoS agreement
with a client, it might be publicly exposed in a blacklist
server until the client gets some refund.

Since the PEP is more domain-specific, it is usually built
into the policy-driven system elements directly. The PDP
and PEP can be located in the same or different applications
and machines, depending on the deployed system model.
6. Future work of policy languages

Through the overview of existing policy languages and
key issues, we come up with some ideas that outline the
possible future research. There are mainly two aspects that
would be further researched, from the basic level of the lan-
guage itself, to broader level such as policies’ applications.

6.1. Policy language

In this part we focus on policy language itself. We
should pay attention to the listed aspects when we pro-
pose a new policy language or revise an existing language.

� XML-based: Taking a policy language’s generality and
usability into account, it seems that XML is the better
choice to define policy languages, since it is an appeal-
ing international standard which is proved to be highly
expressive and extensible, and many existing support-
ing tools already exist. Leveraging the XML format, we
can analyze and edit policy specifications easily with



W. Han, C. Lei / Computer Networks 56 (2012) 477–489 487
the support of a XML browser. In our survey we notice
there are some languages adopting the XML format,
such as XACML, and P3P/APPEL.
� Formal expressivity: As is mentioned in Section 5.3, a for-

malization feature can help system to detect policy con-
flicts before policy evaluation. Thus, advancing formal
expressivity can strengthen the security of policy lan-
guages to some extent. The above-mentioned policy
languages, including PDL, KAOS, REI, ASL, are formal
ones, but XACML is not.
� Privacy policy languages: Privacy protection, as a subject

within security management, is becoming increasingly
important since resources are highly inter-connected
today. Thus we view it as the future work to design pri-
vacy policy languages in a fashion that can be under-
stood by common users without much professional
knowledge. Moreover, it may be more beneficial if these
common users can be engaged in the privacy policy
design. This requires the language specifying policies
to be not only readable by human, but also negotiable
to some extent. Although W3C’s APPEL [14], which col-
lects user’s preference captured from GUI, can make
automated or semi-automated decisions about
machine-readable privacy policies, further work should
be done to ease the privacy policy authoring burden of
common users.
� Goal and Utility Function policy languages: Goal policies

declare the high-level system goal, such as SLA, and
sweep the technical details under the rug. And Utility
Function policies, which can always select actions to
send the system to the state with the highest utility
value, which is superior to the static boolean value set
in Goal policies. Since they provide a high view of net-
work and security management, Goal and Utility Func-
tion policies can easily be accepted by administrators
and common users. However, the advancement in this
field is slow. In today’s existing languages, KAOS [45]
is the most typical Goal language. And the recently pro-
posed VALID [33] is another Goal policy language to
express security goals in a Cloud architecture. However,
to the best of our knowledge, there are few Utility Func-
tion policy languages, except for the Utility Function-
based approach integrated into two products, devel-
oped by Kephart et al. [75,76].

6.2. Policy language application

Most recently, Cloud Computing and SNS (social net-
working services) are gaining momentum in both the aca-
demic and industry areas, and will probably play leading
roles in the future. Thus we consider it promising to lever-
age the policy-driven approach to facilitate management of
these types of large-scale systems, further extending the
application spectrum of policy languages.

� Cloud Computing: a Cloud Infrastructure provider can
leverage policies to govern its network in much the
same way as traditional network management does,
the Cloud Service provider can specify access control
restrictions of its services in the paradigm of policies,
and the Cloud Service users can declare their privacy
rules in a policy language, too. Thus policy method
and related languages may be adopted in various
dimensions in the comprehensive Cloud platform.
Related research already exists since Cloud Computing
has become an important topic [4], such as the above
mentioned VALID[33].
� SNS: The social networking services, especially the pre-

vailing of websites like Facebook, have introduced a
new paradigm of access control: Relationship-Based
Access Control (ReBAC) [77], as the monitoring of access
is based on the interpersonal relationship between the
online owner and receiver, rather than traditional con-
cepts such as role and condition. Hence the required
information release pattern in digital social networking
is very much like the one in our analog world, where
people protect personal data they themselves consider
private, and choose who they want to share the infor-
mation with. Thus policies used to model this paradigm
are more flexible and complicated. Most recently, some
researchers have focused on the general-purpose ReBAC
model and issues about ReBAC policies and related pol-
icy languages [78,79].

When policy languages are used in these applications,
we argue it is a key problem to standardize policy lan-
guages for network management and security manage-
ment. As is mentioned in Section 2.2, the current
implementations except for Axiomatics, usually use their
own policy languages as working languages. However, this
practice is not suitable for a large and heterogeneous sys-
tem. Although IBM Tivoli is adopting some standardized
policy languages, the advancement of standardization of
policy languages should be accelerated.
7. Conclusion and future work

This paper investigates the work on policy languages in
the policy-driven management for large scale systems. Due
to the mentioned advantages, many researchers and ven-
dors have proposed various policy languages and related
implementations. We, therefore, overview the construc-
tion of these policy languages, and introduce some soft-
wares as well. Then we propose some indicates to show
the features of the policy languages and introduce two
types of them: policy languages for network management
and policy languages for security management. We also
discuss the key issues in policy languages and policy-dri-
ven management, and finally we outline the future work
of policy languages and their applications.

According to our investigation, we conclude that first of
all, policy languages could play an important role in to-
day’s large applications, such as the Cloud and the SNS.
Secondly, more researches are needed in the area of the
policy-driven management mechanism and policy lan-
guages. Finally, we notice that only a few implementations
are using standardized policy languages, which is a practi-
cal problem that should be paid attention to.

In the future work, we will compare the commercial
tools in policy languages and performances, investigate
how the standardized policy languages are used in the



488 W. Han, C. Lei / Computer Networks 56 (2012) 477–489
commercial tools, and explore more policy-driven
applications.
Acknowledgements

This paper is supported by ‘‘211-Project Sponsorship
Projects for Young Professors at Fudan’’, The Science and
Technology Development Project of STCSM (Grant No.
09511500902), and a 863 high-tech Project (Grant No.
2011AA100701). The authors thank the anonymous
reviewers of this paper for their helpful comments and
suggestions. And we thank Mrs. Li for her English polish.
References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski,
G. Lee, D.A. Patterson, A. Rabkin, M. Zaharia, Above the clouds: A
berkeley view of cloud computing, Tech. Rep., 2009.

[2] J. Dean, Desins and Advice from Building Large Distributed Systems,
2009.

[3] D.C. Verma, Simplifying network administration using policy-based
management, IEEE Network (2002) 20–26.

[4] P. Goyal, R. Mikkilineni, Policy-based event-driven services-oriented
architecture for cloud services operation and management, in: 2009
IEEE International Conference on Cloud Computing, New York, USA,
2009, pp. 135–138.

[5] B. Moore, E. Ellesson, J. Strassner, A. Westerinen, Policy core
information model – version 1 specification, RFC 3060, IETF,
Febrary 2001. <http://www.ietf.org/rfc/rfc3060>.

[6] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, The COPS
(Common Open Policy Service) Protocol, RFC 2748, IETF, January
2000. <http://www.ietf.org/rfc/rfc2748>.

[7] J. Case, M. Fedor, M. Schoffstall, J. Davin, A Simple Network
Management Protocol (SNMP), RFC 1157, IETF, May 1990. <http://
www.ietf.org/rfc/rfc1157>.

[8] K. Zeilenga, Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map, RFC 4510, IETF, June 2006. <http://
www.ietf.org/rfc/rfc4510>.

[9] J.O. Kephart, W.E. Walsh, An artificial intelligence perspective on
autonomic computing policies, in: Proceedings 5th IEEE Workshop
on Policies for Distributed Systems and Networks (Policy 2004), New
York, USA, 2004, pp. 3–12.

[10] Delivering end-to-end security in policy-based systems, Tech. Rep.,
Cisco, 1998.

[11] H. Tao, A XACML-based access control model for web service, in:
Proceedings of International Conference on Wireless
Communications, Networking and Mobile Computing, 2005, pp.
1140–1144.

[12] OASIS, OASIS Extensible Access Control Markup Language (XACML)
version 2.0, 2005.

[13] W3C, The Platform for Privacy Preferences 1.1 (p3p1.1) Specification,
2006. <http://www.w3.org/TR/P3P11/>.

[14] W3C, A p3p Preference Exchange Language 1.0 (appel1.0), 2002.
<http://www.w3.org/TR/P3P-preferences/>.

[15] IETF, Geopriv Requirements, 2004. <http://www.ietf.org/rfc/
rfc3693>.

[16] K.J. Turner, L. Blair, Policies and conflicts in call control, Computer
Networks 51 (2007) 496–514.

[17] K. Turner, E. Magill, S. Reiff-Marganiec, L. Blair, J. Pang, Accent
(Advanced Component Control Enhancing Network Technologies)
Project, 2001–2005. <http://www.cs.stir.ac.uk/accent/>.

[18] Information technology-open distributed processing-reference
model-enterprise language, International Standard ISO/IEC 15414,
ISO/IEC, 2004.

[19] IBM, 2011. <http://www-01.ibm.com/software/tivoli/>.
[20] IBM Tivoli Security Policy Manager, Tech. Rep., IBM, 2009.
[21] WS-securitypolicy1.3, Tech. Rep., IETF, Febrary 2009. <http://docs.

oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy. html>.
[22] Sun, Sun’s XACML Open Source Implementation, 2011. <http://

www.oasis-open.org/committees/xacml/>.
[23] G. Karjoth, Access control with IBM tivoli access manager, ACM

Transactions on Information and System Security (TISSEC) 6 (2003)
232–257.
[24] G. Karjoth, A. Schade, E.V. Herreweghen, Implementing acl-based
policies in XACML, in: 2008 Annual Computer Security Applications
Conference, 2009.

[25] HP openview policyxpert2.1 product brief, Tech. Rep., HP, 2001.
[26] Openview policy-based network management, Tech. Rep., HP, 1999.
[27] Axiomatics, Axiomatics Products, 2011. <http://

www.axiomatics.com/>.
[28] U. Dayal, E.N. Hanson, J. Widom, Active database systems, in:

Modern Database Systems, ACM Press, 1994, pp. 434–456.
[29] J. Lobo, R. Bhatia, S. Naqvi, A policy description language, in:

Proceedings 16th National Conference on Artificial Intelligence
(AAAI-99), Orlando, USA, 1999, pp. 291–298.

[30] N. Damianou, N. Dulay, E. Lupu, M. Sloman, The ponder policy
specification language, in: Proceedings of Policy 2001: Workshop on
Policies for Distributed Systems and Networks, Bristol, UK, 2001, pp.
18–39.

[31] CIM Policy Model White Paper (CIM version 2.7), Standard, DMTF,
2003. <http://dmtf.org/sites/default/files/standards/documents/DSP
0108.pdf>.

[32] D. Agrawal, S. Calo, K.-W. Lee, J. Lobo, Issues in designing a policy
language for distributed management of IT infrastructures, in: 10th
IFIP/IEEE International Symposium on Integrated Network
Management (IM ’07), 2007, pp. 30–39.

[33] S. Bleikertz, T. Gross, VALID: a virtualization assurance language for
isolation and deployment, in: Proceedings of IEEE International
Symposium on Policies for Distributed Systems and Networks
(POLICY 2011), 2011.

[34] L. Kagal, Rei: a policy language for the me-centric project, Tech. Rep.,
HP Labs.

[35] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, Role-based
access control models, IEEE Computer 29 (2) (1996) 38–47.

[36] J. Nicklisch, A rule language for network policies, Position Paper,
1999. <http://www.policy-workshop.org/1999/policy-99/pdf/26-
Nicklisch.pdf>.

[37] J. Strassner, S. Schleimer, Policy framework definition language,
Internet Draft, IETF, November 1998. <http://www.ietf.org/
proceedings/43/I-D/draft-ietf-policy-framework-pfdl-00>.

[38] R. Bhatia, J. Lobo, M. Kohli, Policy evaluation for network
management, in: Proceedings of 19th Annual Joint Conference of
the IEEE Computer and Communications Societies, Tel Aviv, Israel,
2000, pp. 1107–1116.

[39] J. Chomicki, J. Lobo, S. Naqvi, A logic programming approach to conflict
resolution in policy management, in: Proceedings 7th International
Conference on Principles of Knowledge Representation and Reasoning
(KR 2000), Colorado, USA, 2000, pp. 121–132.

[40] N. Dulay, E. Lupu, M. Sloman, N. Damianou, A policy deployment
model for the ponder language, in: Proceedings IEEE/IFIP
International Symposium on Integrated Network Management (IM
2001), 2001, pp. 14–18.

[41] CIM simplified policy language (CIM-SPL), International Standard
DSP0231, DMTF, 2009.

[42] CIM event model white paper, Preliminary DSP107, DMTF, 2003.
[43] L. Pan, J. Lobo, S. Calo, Extending the CIM-SPL policy language with

RBAC for distributed management systems in the WBEM
infrastructure, in: Proceedings of the 11th IFIP/IEEE International
Conference on Integrated Network Management (IM’09), 2009, pp.
145–148.

[44] T.O. Group, Openpegasus Open Source Project. <http://
www.openpegasus.org/>.

[45] A. Dardennen, A. van Lamsweerde, S. Fickas, Goal-directed
requirements acquisition, Science of Computer Programming 20
(1993) 3–50.

[46] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, D. Lin, Access
control policy combining: theory meets practice, in: SACMATa�ŕ09,
ACM Press, 2009, pp. 135–144.

[47] R. Laborden, T. Desprats, Dealing with stable environmental
conditions in XACML systems, in: Second International Conference
on Systems and Networks Communications (ICSNC 2007), 2007, pp.
63–63.

[48] Q. Ni, E. Bertino, xfacl: An extensible functional language for access
control, in: The ACM Symposium on Access Control Models and
Technologies (SACMAT 2011), 2011.

[49] L. Kagal, T. Finin, A. Joshi, A policy language for a pervasive
computing environment, in: In IEEE 4th International Workshop
on Policies for Distributed Systems and Networks, 2003, pp. 63–74.

[50] A. Patwardhan, V. Korolev, L. Kagal, A. Joshi, Enforcing policies in
pervasive environments, in: Proceedings of the First Annual
International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitousa�ŕ04), 2004, pp. 299–308.

http://www.ietf.org/rfc/rfc3060
http://www.ietf.org/rfc/rfc2748
http://www.ietf.org/rfc/rfc1157
http://www.ietf.org/rfc/rfc1157
http://www.ietf.org/rfc/rfc4510
http://www.ietf.org/rfc/rfc4510
http://www.w3.org/TR/P3P11/
http://www.w3.org/TR/P3P-preferences/
http://www.ietf.org/rfc/rfc3693
http://www.ietf.org/rfc/rfc3693
http://www.cs.stir.ac.uk/accent/
http://www-01.ibm.com/software/tivoli/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.axiomatics.com/
http://www.axiomatics.com/
http://dmtf.org/sites/default/files/standards/documents/DSP0108.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0108.pdf
http://www.policy-workshop.org/1999/policy-99/pdf/26-Nicklisch.pdf
http://www.policy-workshop.org/1999/policy-99/pdf/26-Nicklisch.pdf
http://www.ietf.org/proceedings/43/I-D/draft-ietf-policy-framework-pfdl-00
http://www.ietf.org/proceedings/43/I-D/draft-ietf-policy-framework-pfdl-00
http://www.openpegasus.org/
http://www.openpegasus.org/


W. Han, C. Lei / Computer Networks 56 (2012) 477–489 489
[51] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Xpref: a preference language
for p3p, Computer Networks 48 (2005) 809–827.

[52] XML Path Language (xpath) version 1.0, Standard, W3C, 1999.
<http://www.w3.org/TR/xpath/>.

[53] W3C, P3P 1.0 Implementations. <http://www.w3.org/P3P/
implementations>.

[54] AT&T, Privacy Bird. <http://www.privacybird.org/>.
[55] L. Code Infusion, P3pedit. <http://p3pedit.com/>.
[56] P3PWriter, P3pwriter. <http://www.p3pwriter.com/>.
[57] IBM, Enterprise Privacy Authorization Language. <http://

www.w3.org/Submission/2003/SUBM-EPAL-20031110/>.
[58] M. Backes, B. Pfitzmann, M. Schunter, A toolkit for managing

enterprise privacy policies, in: Proceedings of ESORICSa�ŕ03, LNCS,
vol. 2808, Springer, 2003, pp. 162–180.

[59] S. Jajodia, P. Samarati, V.S. Subrahmanian, A logical language for
expressing authorizations, in: IEEE Symposium on Security and
Privacy, 1997, pp. 31–42.

[60] S. Jajodia, P. Samarati, M. Sapino, V. Subrahmanian, Flexible support
for multiple access control policies, ACM Transactions on Database
Systems 26 (2) (2001) 214–260.

[61] AVISPA, The intermediate format, Automated Validation of Internet
Security Protocols and Applications Deliverable D2.3, AVISPA, 2003.
<http://www.avispa-project.org/delivs/2.3/d2-3.pdf>.

[62] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo, A goal-based approach to
policy refinement, in: Proceedings of the Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks
(POLICY’04), 2004, pp. 229–239.

[63] N. Li, Z. Mao, Administration in role-based access control, in:
Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security (AsiaCCS’07), 2007.

[64] R.S. Sandhu, V. Bhamidipati, Q. Munawer, The ARBAC97 model for
role-based aministration, ACM Transactions on Information and
Systems Security 2 (1999) 105–135.

[65] N. Li, M.V. Tripunitara, Security analysis in role-based access control,
ACM Transactions on Information and Systems Security 9 (2006)
391–420.

[66] S. Jha, N. Li, M. Tripunitara, Q. Wang, W. Winsborough, Towards
formal verification of role-based access control policies, IEEE
Transactions on Dependable and Secure Computing (TDSC) 5
(2008) 242–255.

[67] Q. Wang, N. Li, H. Chen, On the security of delegation in access
control systems, in: Proceedings of the 13th European Symposium
on Research in Computer Security (ESORICS), 2008, pp. 317–332.

[68] W. Han, Q. Ni, H. Chen, Apply measurable risk to strengthen security
of a role-based delegation supporting workflow system, in: IEEE
International Symposium on Policies for Distributed Systems and
Networks (POLICY 2009), IEEE, London, UK, 2009.

[69] OASIS, XACML v3.0 Administration and Delegation Profile version
1.0, August 2010.

[70] P.A. Bonatti, S.D.C. di Vimercati, P. Samarati, An algebra for
composing access control policies, ACM Transactions on
Information and System Security 5 (1) (2002) 1–35.

[71] P. Rao, D. Lin, E. Bertino, N. Li, J. Lobo, An algebra for fine-grained
integration of XACML policies, in: SACMAT, 2009, pp. 63–72.

[72] K. Borders, X. Zhao, A. Prakash, CPOL: high-performance policy
evaluation, in: Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS), ACM Press, 2005,
pp. 147–157.

[73] A.X. Liu, F. Chen, J. Hwang, T. Xie, Xengine: a fast and scalable XACML
policy evaluation engine, in: Proceedings of the SIGMETRICS’08,
2008.

[74] P. Gama, P. Ferreira, Obligation policies: an enforcement platform,
in: Proceedings of the Sixth IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’ 05), 2005.

[75] J.O. Kephart, R. Das, Achieving self-management via utility functions,
IEEE Internet Computing (2007) 40–48.

[76] R. Das, J.O. Kephart, J. Lenchner, H. Hamann, Utility-function-driven
energy-efficient cooling in data center, in: ICAC 2010, 2010, pp. 61–
70.

[77] C. Gates, Access control requirements for web 2.0 security and
privacy, in: Web 2.0 Security and Provacy (W2SP 2007), 2007.

[78] P.W.L. Fong, Relationship-based access control: protection model
and policy language, in: Proceedings of the First ACM Conference on
Data and Application Security and Privacy (CODASPY’11), 2011.

[79] P. Fong, I. Siahaan, Relationship-based access control policies and
their policy languages, in: Proceedings of The ACM Symposium on
Access Control Models and Technologies (SACMAT 2011), 2011.

Weili Han is an associate professor at Fudan
University. His research interests are mainly
in the fields of Access Control, Digital Identity
Management and Service Oriented Architec-
ture. He is now the members of the ACM, IEEE,
SIGSAC and CCF.
He received his PhD of Computer Science and
Technology at Zhejiang University in 2003.
Then, he joined the faculty of Software School
at Fudan University. From 2008 to 2009, he
visited Purdue University as a visiting pro-
fessor funded by China Scholarship Council

and Purdue.
Chang Lei is a graduate student at Fudan
University. Her research interests are mainly
in the fields of policy driven management,
information security.

http://www.w3.org/TR/xpath/
http://www.w3.org/P3P/implementations
http://www.w3.org/P3P/implementations
http://www.privacybird.org/
http://p3pedit.com/
http://www.p3pwriter.com/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.avispa-project.org/delivs/2.3/d2-3.pdf

	A survey on policy languages in network and security management
	1 Introduction
	2 Overview of policy-driven management
	2.1 Typical architecture
	2.2 Existing implementations

	3 Construction of policy languages
	3.1 Event–Condition–Action Paradigm
	3.2 Condition–Action paradigm
	3.3 Comparison of paradigms

	4 Policy languages for network and security management
	4.1 Policy languages for the network management
	4.1.1 PFDL
	4.1.2 PDL
	4.1.3 Ponder
	4.1.4 CIM-SPL
	4.1.5 KAOS

	4.2 Policy languages for the security management
	4.2.1 XACML
	4.2.2 Rei
	4.2.3 P3P/APPEL
	4.2.4 EPAL
	4.2.5 ASL
	4.2.6 VALID


	5 Key issues
	5.1 Policy conflict detection and resolution
	5.2 Refinement for Goal policies
	5.3 Policy administration in distributed environments
	5.4 Performance of PDP
	5.5 Execution in PEP

	6 Future work of policy languages
	6.1 Policy language
	6.2 Policy language application

	7 Conclusion and future work
	Acknowledgements
	References


